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Part | — Semiconductors



Why Semiconductors ?

Semiconductors are the materials between metal and insulator.

The conductivity can be flexibly adjusted by doping impurities.

Different impurity gives different conductivity behaviors, such as hole and electron.
Structure is almost perfect so that the materials are capable to be manipulated.

The built-in field inside a semiconductor is controllable from outside.

It’s compact (small size) and has the capability for integration.

- high-speed ICs, nano-technology applications, and quantum devices.

Technology template (can be made by standard processing)

- processing, packaging, and testing are ready and very suitable for mass production.

ReSiStiVity1 P (Q Cm) Pinsulator ~ 10* Q2 cm Psemiconductor = 10-%-10*Q cm
Pmetal < 10° Q cm



Periodic table of atoms

Sc| Ti|V |Cr
Y [ZrNbMo
Hf | Ta|W

Rf|Db|Sg

La|Ce|Pr
Ac|Th|Pa

» SiC, GaAs, BN, InAs, GaP, CdS, CdSe, ZnS, ZnSe, PbS, and PbTe



Crystal Structure

Cubic class of crystal
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® The semiconductor materials we will study are single crystal, that is, the atoms are arranged in a 3-D
periodic fashion. The periodic arrangement of atoms in a crystal is called a lattice.

® For a given semiconductor, there is a unit cell that is representative of the entire lattice; by repeating
the unit cell throughout the crystal, one can generate the entire lattice.



Miller index

Directions in crystals of the cubic class are very conveniently described in terms of Miller notation. For
example, any plane in space can be represent by:

X Z .
—+ y +—=1 where a, b, and c are the intercepts made by the plane at x, y, and z axes.

a b c

Writing h, k and | as the reciprocals of these intercepts, the plane can be described by

hx+ky+1z=1
The Miller indices for this plane are written as (hkl).
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Atom arrangements of semiconductors

a

(a) Si(diamond) Face center cubic

O Ga atom
b Y @ Natom

120° /\
AL‘M a

(c) GaN (wurtzite)

N

(111)

‘!/7[ O Ga atom
{5/\) b @ Asatom

(b) GaAs (zincblende)

The ultimate tensile strength of Si (0.35X10° dyn/cm?)
IS maximum in <111> directions. In addition, the
modulus of elasticity in the <111> directions is higher
than that in the <110> or <100> directions (1.9X10%2
dyn/cm?, 1.7X10% dyn/cm? and 1.3X10% dyn/cm?,
respectively). As a result, Si tends to cleave on the {111}
planes.



Energy Band of Semiconductors

,/"Of"“/s,\_e_-\ X, The energy level of an isolated hydrogen atom are given by
’ ; NS . Bohr model:
: \". Electron ' -m.q’ -13.6
L @ clectron: | O b E, = 9 _ eV
1 1 1 ! \ 1 1 I 2 2 2 2
" Nuclear » Nuclear 86‘0h n n
~_core ./ N core o . P .
S \ e where n is a positive integer called the principle quantum

number. The discrete energies are -13.6 eV for the ground
T ’ e level (n = 1), -3.4 eV for the first excited level (n = 2), etc.

The identical energy level of two closed-up atoms will split
into two levels by the interaction between atoms. When we

e ‘x::;:\ bring N atoms to form a crystal, the n-fold degenerate
“spli¢ .~ Spindown energy level will split into N separate but closely spaced
A ® ® AN VY levels due to atom interaction. This results in an essentially

continuous band of energy.

Two close-up atoms
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Valence electron Valence electron

N Na atoms = N valence electrons
But with 2N energy levels

Free electrons

<+ ./V ([ J
2N energy 0
levels o I ./ N valence

electrons

ﬂ High conductivity

Example: Alkali metals and insulators

For insulators, valence electrons completely
fill an allowed energy band.

2N states empty

*

+E9

2N states full

If E, Is too large, no electrons can gain
enough energy to translate from the lower
energy band to the higher energy band.

ﬂ Low conductivity



k-space diagram

For a free electron, the kinetic energy E is given by

2

P
2m

E—

0

where p is the particle momentum and m; is the free electron mass.

However, the effective mass of a conduction band electron is different from the mass of a free electron.
The energy-momentum relationship of a conduction electron can be written as

E= % where p is the crystal momentum and m,, is the free electron mass.

AN e pork

E-p (or k) plot of a free particle

b 4 « [110]

<> @ «— f.f.c. crystal
Q /@/\
Electrons travelmg in different directions encounter different
potential patterns and therefore different k-space boundaries.

»[100] &




Energy band diagram
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® For direct band material, transitions between two allowed bands can take place with no change in crystal
momentum p.

® A transition in an indirect bandgap material must necessarily include an interaction with the crystal so that
crystal momentum is conserved.



® \With a known E-p relationship, one can obtain the effective mass from the second derivative of E with
respect to p

d’E |
m, = { ap? } ®» The narrower the parabola, the smaller the effective mass.

Density of state of bulk semiconductors

L L/, =m L/, =n L/2, =k A, - wavelength of electron, i = X, Y, z
L ./' Use 4, =h/p; m Lxp,=hxmorLxdp,=h
A Lxp, =hxnorLxdp,=h m) L3xdp,xdp,xdp,= h?
L Lxp, = hxkor Lxdp, =h

The volume of an allowed state in momentum space is h3:

N(E)dE = 25 2P dP _ 4%(%)3’2\/EdE — N(E)= 47[(%)3’2@

h3



Doping on Semiconductors

SOOI TION
ELECTREM _ CONDUSTION
ELECTRIN

% As- -doped

QI‘ (51 (n-type)

[ L)

Pure Si-crystal Doped Si-crystal



Activation of doping

Conduction band

Sy » ro % e 7°
PO o ° o ° o
sl
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Donor doping Intrinsi Acceptor doping
(n-type) NHnSIC (p-type)

Valence band

Due to the thermal agitating, the carrier concentration and the type of carrier can be controlled by impurity
doping!!!



lonization energies of impurities in Si

4

Energy levels of hydrogen atom are E =- mq
. . . 8a2h282
— SI — SI Si 0

Using the energy required to remove an electron from the ground state of
hydrogen atom is 13.6 eV,

13.6 m_
Eionization = 82 m
— SI — Si Si roo
| for Si, m_ = 0.06 m, and & = 11.8, q E.oiration ~ 0.06 €V
n-type Si

lonization energies for group 111 and V impurities

Dopant P As Sb B Al Ga In
Acceptor level 0.045 0.057 0.065 0.16

Donor level 0.044 0.049 0.039



Fermi-Dirac distribution
Thermal equilibrium: the total energy of a semiconductor is a function only of crystal temperature.

.. . 1
Fermi-Dirac distribution: f(E)= £ E-: Fermi energy
F

1+ex
p( T )
The probability of a state with energy E occupied by an electron at temperature T. The Fermi function only

represents a probability of occupancy. It does not contain any information about the states available for
occupancy and, therefore, can not by itself specify the electron population at a given energy.

A

' : ® E_ : the highest filled state at T= 0°K (from the Pauli’s
0.8 i exclusion principle)
f(E) 06 ® When E = E, f(E) =0.5.
0.4 ® Only the electrons near the Fermi’s level have the contribution
0 to current conduction.

® n=[""n(E)E =] "N(E)f(E)dE




Effective Density of States
The electron carrier density
nsz(E)-f(E)-dE where N(E)= 47;( eh )?xJE and f(E)= L

f ’\ 1+ exp(El:

Density of states Fermi-Dirac distribution

If Ed,v > 3kT’ - f (E) ~ e—(E—EF)/kT or If Ed,v < 3kT, N (E) ~1— e—(E,:—E)/kT

» n=[N(E)- f(E)-dE = 47{ } jfexp(— F)dE

_ 2[ 27m KT Tz R

h2
3/2 ~N _ECk_TEF
b= 2|:27Zf:]]§kT:| o-(Er-E/)/KT » N~ N;X€ - where N, = 2X(27zn;e WKT o2
p~N,xe 7 Effective density of state




If Eq, > 3KT, — f(E)~e =™

In n-type material that is not too highly doped, few of the allowed states in the conduction band are filled.
The Fermi function in the conduction band is very small, and the Fermi level is well below the bottom of the
conduction band. Then (E. — E;) >> kT, and the Fermi function reduces to the mathematically simpler

Maxwell-Boltzmann distribution function. That is
f (E) ~ e—(E—E,:)/kT

At energies well above the Fermi level the fraction of available states that are occupied is so small that the
exclusive-principle limitation has no practical effect and Maxwell-Boltzmann statistics are applicable.



Free carriers of semiconductors

n=Ng Blﬂ{' {EC-E,:I}'I;T]

{=n;)
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n-type l E-E.
Ec_ B _F _________ T _____ EF _EC_EF
E, n=N.xe K
e v

_____ EF p:NV Xe_ KT

E--E\ P/

States at energy E which are less than Eg are mostly filled; States at energy E which are larger than
E¢ are mostly unoccupied.



Example: Mass action law

Ec—Ep
n~Ncxe * ‘ ) E
_Er-Ey n-p= ni = Nc ) I\Iv .exp(_—g)
N, e T T

At room temperature,

kT~25meV  mmp exp(-3KT/KT) ~ 0.05

B n, (GaAs) = 1.2X108 cm? < n, (Si) = 1.45X 1010 cm3

® n, p are quite sensitive to the E, temperature and impurity level !!!
® The electrical properties can be controlled by impurity over a few orders of magnitude !!!



A
Example: Intrinsic level

_Ec-Ef _Ep-By

n=p=n —>N.xe ¥ =N,xe “ —>EF=EC+EV+kaIn{&}
2 2 .

m

:EC+EV+3kTXIn_p

2 4 m,

At RT, the second term is much smaller than the E,. Hence, the intrinsic Fermi level E; lies very
close to the middle of bandgap.

For n-type semiconductor

_Ec-E
n, = Nc xe EFET_Ei - trinci
ﬂ e or N,=n, xe E;: intrinsic level
— KT
ND_che » EFn'Ei f NDf
For p-type semiconductor
_Ei-Ey
pl — NV X e KT Ei_EFp
‘ EFp_EV or NA - pi Xe kT » EI_Epr NA f

N,=N, xe K



Problem: ASiingot is doped with 1016 As atoms/cm3. Find the carrier concentration and Fermi level
at 300K.

At 300 K, we can assume complete ionization of impurity atoms. We have n ~ Ng =10% cm-3

2
Use P= :I— —2.1x10%cm™

D

D

E.—E, =kT x In{%} =0.206eV > 3KT

E. —E =KT x |n{ﬁ} = 0.354eV
n.

If both donor and acceptor impurities present simultaneously, the impurity that is present in a greater
concentration determines the type of conductivity in the semiconductor.



Example: Charge neutrality

If charge neutrality in a region where all dopant are ionized,

N,+p=N,+n or n-p=N,-N,
2

. ni
From mass—action—law - p=—-
n

2

n
—->n——=N_,-N, or
n

3 - N, — N N, — N
1= No NA+\/(M)2+“2 and p=—"-—"> D+\/(—A 2)* +n’
2 2 ' 2 2

In general, the net impurity concentration [N, —N,| is larger than the intrinsic carrier concentration.
Therefore the above equations can be simplified to

n=N,-N, or p~=N,—N,



Problem: Compensation

A silicon crystal is known to contain 10 atomic percentage of arsenic (As) as an impurity. It then receives a
uniformity doping of 3 x10® cm-3 phosphorus (P) atoms and subsequent uniformity doping of 10 ¢cm-
boron (B) atoms. All dopant are activated by thermal annealing.

Si has 5 x10%? atoms cm3, 104 atomic percentage

= Siis doped to a concentration of 5x1022 x106 = 5x106 As atoms cm-2

The added doping of 3x10¢ P atoms cm3,

m) 5x10%6 + 3x1016 = 8x10%6 n-type atoms cm-3
p-type doping is 1018 cm-3,

= p=10!8-8x106 = 9.2x1017 cm-3



Carrier transport phenomena



Carrier Drift

Mobility

Under thermal equilibrium, the average thermal energy of a conduction electron can be given by:

1

5 myv, = 5 KT where v, is the average thermal velocity.

At 300 K, the thermal velocity is about 107 cm/s for Si and GaAs. Electrons in semiconductor are therefore
moving rapidly in all direction. The thermal motion of an electron can be visualized as a succession of
random scattering from collisions with lattices, impurities, and other scattering centers. The average
distance between collisions is called mean free path, and the average time between collision is called mean

free time, 7,

— —

F=0 . F+0
J > o~
» N\/l P '/\f

7.,- scattering
mean-free time

Electrons exchange energy when collide with the lattice and
drop toward their thermal equilibrium positions. The energy
lost in each collision is much less than the mean thermal energy
of the electrons.



F-At=m-Av

—QEz,, =m,-v, or V4= m where v is the drift velocity in an applied field.

. Vv
Let mobility u =—-2=q ><T—°'l
E m

n

Mobility is an important parameter for carrier transport because it describes how strongly the motion of an
electron is influenced by an electric field.



Example: hot carriers

For Si semiconductor, electrons with g, = 1400 cm?/Vsec have a drift velocity of only 1.5 % of the thermal
velocity if E = 100 V/cm. Typical thermal velocity at RT is 107 cm/sec.

_ 1 .
EA ovqf B= EmnVi /
When electrons attain energy above the ambient thermal energy, they are often characterized as hot carriers
with an effective temperature T,. When the energy of the hot carriers reaches a critical value, a new scattering
process (optical phonon scattering) become important. This new scattering process can effectively transfer

energy from the hot carriers to the lattice, and it is the major reason that the drift velocity approaches a limit
value at high field conditions.

Current density:

— —

J,=>.qV, =—ngV, =nqu,E
Jp = pau,E

—

Jo =, +J,



Empirical expression of e-h mobility

7.4x10°8T 2%
1+[N /(1.26x 107 T?*)]x 0.88x T 1

,Un — 88 x Tn—0.57 +

7.4x10°T *%

=543xT %" +
Hp " T 14[N/(2.35x10"T2%)]x 0.88x T °¥

N (cm3)  Arsenic Phosphorus Boron

108 1423 1424 486
1014 1413 1416 485
105 1367 1374 478
1016 1184 1194 444
10%7 731 27 328
10%8 285 279 157

10%° 108 115 72




Resistivity

5 . | = JA=qnv, A=qnu EA=qnu - A= o2V
/', --------- Z _____________ o d /un /un L L

! f | J=3,+3, =(ang, +apy,)-E

1
P o rapu, NPT s [

Carrier concentration and mobility are the two most important factors which affect the conductivity of
a semiconductor.

Q]

L L L W, 1
R=p—= Let’'schooseL=w— R=p—= =p-=R
'OA 'Otxw 'OA ptxw 'Ot 1

Sheet resistance



Four-point probe

The four-point probe technique can also be used to measure resistance of a connection where contact resistance
(R.) of probes can not be ignored. As shown in the following figure, probe 1 and probe 2 are used to inject
current to the contact pads, and probe 3 and probe 4 are used to measure the voltage difference between the two
pads. Please show that the resistance (R,) between the two pads can be readily obtained by dividing the voltage

measured by probe 3 and 4 to the current injected by probe 1 and 2. The contact resistance of the probes are
canceled by using the technique.

C‘@i/

probe 1’(

Top view Side view



Carrier Diffusion

Because of the finite temperature, the electrons have random motions. The
A N(X) gradient of carrier concentration will result in a net carrier flow. Diffusion
current is generally not an important consideration in metals because of their
high conductivity. The lower conductivity and the possibility of non-uniform
density of carriers and of carrier energies, however, often makes diffusion a
very important process affecting current flow in semiconductors.

; 1
A F =~ vy[n(=1) = n(1)]
b
' F=2v, (© -1 +1 %)
: o dx dx
: dn dn -
AN =—Vth|&=—Dn& D, : Diffusion constant
Fi =l F’
dn dp

F, &= &——F Jo=—aF=aD, ~ J,=-aD,
=P F (net flux) X X
I



Current density equations

The carrier-transport process involves not only the drift
(a) and also the diffusion processes !!!

PULSE
GEMNERATOR

I.III‘lJ
?J.

Total current is:

dn d
J, = Pau,E —qD, -

J, =nqu,E +aDb,  dx

(b dx

g =J0+J,

cond

{ch




Continuity Equations

We are now ready to consider the over all effect when drift, diffusion, and recombination occur
simultaneously in a semiconductor material.

X x+dx
“““ 7r
-[pr(x) -;F IR ©E,(x+dX) = Fyp(X) + dF, /dx + dx
i dy

oF
‘ Z—fdxdydz ={F, (X) = F_, (x+ dx)}dydz = - . ™ dxdydz
X

The number of hole in the slice may increase due to net current flow into the slice and net carrier
generation in the slice. The over all rate of holes increase include three components: the change of hole flux

at x, plus the rate at which holes are generated, minus the rate at which they are recombined with electrons
in the slice.

a _
a;n dxdydz = - * dxdydz + G dxdydz — 2= Peo dxdlydz

OX T,



1
dx

°
Jo(X) — i g > —»Jp(x+dx) Generation: G, Recombination: R,

O
Gp, R,
oF _
P, dxdydz = ——dxdydz + G _dxdydz — Pn = P dxdydz
# ot OX T,
_ on n_—n
P _Fo g PP gpg Do TR g DM
ot OX i T, ot OX T
J d 2
—”:nynE—an—n 0 la‘]n:ﬂni(nE)+Dnan__8an
g dx O q OX OX? OX
Jp _ dp — 18d, o’p WoFy
— = pu,E-D,—= == (pE)—I—D ==
q dx q Ox P OX P ox? OX




=

In addition to the continuity equations, Poisson equation must also be satisfied.

where p, is the space charge density and &, is the dielectric permittivity.

on OF on 0° n —n

—=nu —+uE—L+D " +G -

o e T T e T .

op OE on o°p p.—p
"o p gy Ty B4 D, PG T P

ot Pty OX Hr OX P ox? P T,

8E_&

OX

&

S

and  p,=gqx(p-n+Nj—-N,)




Steady-state injection from one side

Pn(X)
At steady state,
P(0) THge
op o°p, P,—P
hy ¥ —+=0=D,—-——"
ot > OX°
PO )
G and the B.C. are: p,(x = 0) = p,(0) and p,(=0) = py
= T

The solution of p,(x) is P, (X) = p,, +[P,(0) - p,,Je”"™" where L, is called the diffusion length.

If the boundary conditions are changed so that all excess carriers at x = W are extracted, that is, p,(W) =
Pno: then the solution becomes

sinh[V =X/ 1
p,(X)=p,, +[P,(0)—p,] /L"

| sinh(W /L))
op D 1
' J =—qgD_—|, = 0) - P



Metal-semiconductor Contacts



Equilibrium in Electronic Systems

At thermal equilibrium, Fermi level is constant throughout a system.

oo 1 oooooooo
OO0 Oooooo
> |- B E >| mO0O0
S| mmooo0oo - S m
|l mEmD o R Er
U apEEEEN L
EEEEEEEEN EEEEEEEEN
EEEEEEEEEEN EEEEEEEEEEN
States States
System 1 (metal) System 2 (semiconductor)
The filled state density is The vacant state density is
— e _ & —— Allowed electron state density
n=4g FD‘\ Fermi function V= g.(:I'_FD)

We now consider that the two systems are brought in intimate contact. Equilibrium is reached when
there is no net transfer of electrons at any energy.

nv, =n,v, or FDlgl(l_ FDz)gz - Fngz(l_ FDl) 0,
= FDl = FDZ or EFl = EFZ



Example: inhomogeneously doped semiconductor

Consider now the energy band diagram at thermal equilibrium for an n-type semiconductor doped
with Ny, for 0 < x <a and with Ny, for x > a. Please draw the energy band diagram of this system.

0 EO
E E
p————— B » e =
Ey Ey
Ng; Ng,
E,: vacuum energy ‘
EO
Ec -/




Band diagram

A
o /E %Fllled state
E

............... N R =
illed state N Filled state
. > 9(E)
Metal Semiconductor

In the metal, the Fermi level is immersed within a continuum of allowed states, while in semiconductor, the
density of state is negligible at the Fermi level.

- 'T' ———————— B S - E,: vacuum energy
qdy : work function (4.75 eV) q¢sI - work function 9X : eEIfctron affinity (4.05 eV)
N S Yoo =
E

® At thermal equilibrium, there is no net transfer of electrons at any energy. Therefore the Fermi level is
constant throughout the system.

® If ¢, is larger than ¢, e will flow from semiconductor to metal, and this will causes the E_ to bend upward

® If ¢ is larger than ¢, e will flow from metal to semiconductor, and this will causes the E_ to bend
downward.



Band diagram of metal-semiconductor interface

n-semiconductor p-semiconductor
e . E
TN e e T
l I T r Xq 0¢s ax
--------------------- g 9% oX oy 4’{ - | v B
| ¢ Ec @)
) @T* ——————————— E © l
. % ® Y / """"""""""""""""
@ ,/// //////
/ S ””/’7’”////// . /
Schottky ¥ . q¢BT
contacts d q¢

® ¢ : build-in protential = ¢, - ¢, = @&, — X —(Ec - Ef,)
® ¢ : barrier height = ¢, - X
® X, : depletion region width

® Our development thus far has relied on the fact that basic band structure of the two materials are
unchanged near the surface.



A
Charge, Depletion, and Capacitance

n-type semiconductor

AN —_——— g ———-E, Consider the Poisson equation:
ad, E). and ¢(x) | . q; a4
"""""""""" q o R -
¢ 9% _ 9NN +p-n
} ________  S— —E dx’ g( ‘ N\‘ \Q )
/ Efn
> - E, For X < Xy,
0 Xy ’ n= NC X e_[EC(X)_EF]/kT
X =
For x >> 0,

(o) = N, = N_ x g (Fe=)Ee)/KT

> or n — Nd X e_[EC(X)_EC (o0)]/ KT — Nd X e_q¢(x)/kT
AP Ay ey,

> » ! N, (1—e q¢(x)/kT)
| d 2 |
| X g |




Complete Depletion Approximation

n
Depletion region Quasi-neutral region
N, Lo
‘ - If ¢ is large enough to deplete the free carriers in the junction, the
Complete depletion complete depletion approximation is then valid.
Real case approximation
> X
0 X4
i - d’¢ ¢ gN, X°
The Poisson equation becomes : =——N, m ¢=—""—+Cx+C,
dx* e, g 2
Boundary conditions :
do(xy) gN
E(%) =~ dxd =0=C =% ANy X X \2
S0 my g0=" ()]
g 2 Xy

$(0)=0=C, =0 S



n
N —
> X
P Xq
aN
<—— Q=0gN,x, =+/20¢&.N
' > X
¢ Xq
' > X
E Xq
O ________________________
-ONgXy/ & de "X

Depletion region Quasi-neutral region

¢(Xd): i
m» N,/

aN, X,
. 2
Xd\<

[SHN V)

or 4=
X

X (1=—)
X4



Applied bias and capacitance

When a bias is applied to a metal-n-type semiconductor junction, we need to consider the non-equilibrium
condition of the junction. Under a bias condition, the barrier is reduced when the metal is biased positively
with respect to the semiconductor, and it is increased under bias of the opposite polarity.

.................. 3 WERLCRY 4
a¢ E, | qv, T
N Dk 4 ---------- E E . Efn l q(ﬂ Va)
fm n Em p = R —— c
%// . _ &, _ _ // :
% | _ %
V,=0 V,>0 V, <0

Under the bias conditions, the voltage drop across the space-charge region is changed to (¢ — V,), then the
space charge density in the semiconductor changes accordingly.

C-2
Q:quXd :\/qusNd(¢i _Va) \A
"~ _slopexc N,
C:@: qgsNd = gs or (¢I —Va):—qgsl\zld \\\
oV, 2(¢ -V.) X, 2C —| > V,



Example: Complete depletion approximation

Complete depletion approximation is valid only when the build-in potential is large enough to deplete the
free carriers in the space-charge region.

In equilibrium,

J,=0=qu,nE, + an@ —E, = D, 1dn_ kT ldn
dx 4, N dx q nadx

Use EX:—d—¢—>d¢:k—Td—n —>A¢5:k—TIni
dx q n g n

For n” = 10 cm3, n = 101 cm3, and the variation of the dopant concentration is over the range of a few
hundred nanometers,

> A$=0.12V > E, = —i—¢ = 2400V /cm
X

2
3—?z5x107V/Cm2 :_E(ND -n) =N, —n[=10°cm™ - N, *n>>0
X &,

Under this condition, the complete depletion approximation is not valid.



-V Characteristics

Drift-diffusion approach

dn —qndg¢ dn
J. =q[hp E, +D,—]|=0qD +
. Q[ﬂTnx s Ik I bryrwiorwd
D, _kT
TR
q¢ Xg _9¢

_ Xd v _M
xe , and  [[..]Jdx =J,[eTdx=qD,[ne ]y
0 0

B.C.:dXy)=¢-V,=¢—-¢,—-V, and ¢0) =0,

_0¢y _a¢
n(x,)=N, =N, -e KT, and n(0)=N,-e Vi
_a¢s

KT Va 2
m 5 =R e 1) where g0 =TaXop- g Xy

Xg _q4(x)
j e K dx & ‘
0




|
_a4g

Va _anNcekT ZCI(¢, _Va)N 1/2
q JX:JSX[ekT —1] where 'Js_ kT ><[ < d]/

S

PVa
For convenience, J = JS' x[e™ —1] 1.02<n<1.15,n: ideality factor



Surface States

There are extra allowed states for electrons that are present at the semiconductor surface, but not within

the bulk.

Tamm or Shockley states

> .
2  Bi=si=si=Si=
= ('n o
3 M6 =si=Si=Si=
= ('n I 1 1 Bulk
S\ Si=Si=Si=§j=
g (-n R
3 Si=Si=Si=Si=
T
Surface

Surface states
7 —F—
2 |/
8 — EV

N, ~ N3 (cm), for Si, N, =5 x 10%? cm3
—» Ng =10% cm?

Bonded foreign atoms or crystal defects

_0 =Si=Si=Si=Si=

T

Acceptor states

(:Si =Si =Si=Si =

Surface

'Sj =Si =Si =Si =

UM

Bulk

® Donor states: states are neutral when occupied by
electrons and positively charged when unoccupied.

® Acceptor states: states are negative when occupied

and neutral when empty.



& _______________________|
Example: Surface state and surface recombination velocity

An n-type Si wafer with a doping concentration of 108 cm- at RT is illuminated through a passivating layer
of SiO, so that the hole and electron density exceed their thermal equilibrium values. Assume that the
surface electron density n, = 10 cm- at thermal equilibrium, the photo generation of carriers is 2x10* cm-
251, and the surface hole density under illumination increases to p, =10%° cm3.

Since ng, = 101 cm3 << Ny = 10 cm3, the surface is slightly depleted
hv E. of majority carriers.

________________________________ g.  Ihethermal equiliorium density of hole is
P, = Ni?/Ng, = 2.1x104

N After photo generation,

p, =10% cm3>>p,,

therefore the excess carrier density of hole is Ap, = 101 cm-3

If SIO = 104 cm/s, the net recombination rate is
U, =S, x4p, = 10 cm%s™t,
therefore 50% of the excess carriers are recombined at the surface.
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Maxwell’s equations and wave propagation

Maxwell’s equations, in MKS unit, can be written in the form

vxE(r,a))z—@ V><|—‘|(r,a))=J+@ V.-B=0 and V-H=p
ot ot
E:V/im  H:A/m B:Vr-nSZeC:V;ezb D:% p:% and J:%

Continuity equation:  v.J(r, @) = _op
ot

Totally, we have 15 unknowns, but with only 6 independent equations. To solve the Maxwell’s equations, we
need more equations.

mp Constitutive relation

J(r,o)= f{E(r,w),B(r,®)} D(r,0)=f{E(r,0),B(r,0)} and
H(r, o) = f{E(F,),B(F,®)}



A
In a linear lossless, homogeneous, and isotropic medium, the constitutive relation can be written as

B(r, o)
H(w)

J(r,o)=0 D(r,o)=¢(0)E(r,0) and H(r,o)=

Additional 6 equations

Monochromatic plane waves

Consider a homogenous and source free region in free space, then
J(r,w)=0 D(r,w) = ¢,E(F, ») B(r,w) = u,H(r,w)
For a monochromatic plane wave,

E(r,o)=Re[E(r)e™] and H(r,o) = Re[H (r)e ]

» VxE=iwuyH VxH=-iwg,E and V-E=V-H=0



Consider now,
VxVxE :W E)-V’E=iou,VxH =aw’uecH
0
B VE+KE=0 VH+k*H=0 and k®=w’us, =o'’
Wave equations

The solutions to above wave equations can be written as

m
Il

Ee*" +Ee™ and H=H e +He™ or

E(r,t)=E, cos(wt —k -F) + E, cos(at + Kk -T)

Phase functions

If we only consider the forward-propagating waves,

—

E=Ee* and H=He"



Use VxE=iwuH /
» iRXEfeiRr:ia)ﬂoH‘feiR-r_) E

Similarly, é xH, :—iEf and € -H, =6 -E =0
_ My
A E.

Consider now, if the wave is propagating along z direction

~

A X
E, ,H
A
) / > 7
y H,
E,|=1m,/H,|:x— polarized and |E |=-n,H,|:y— polarized




Example: Plane waves

What is a plane wave? _
Does not exit!

The wave has a perfect flat and infinite in extent phase front.

So under what condition, an obtainable wave can be approximated as a plane wave?

Laser Truncated x-polarized wave

\ 4
The width of the output beam is finite

2
Spatial filter Phase front

r2

2W§

Let the truncated x-polarized wave be E =6 E e*“e w_ :beam _ waist

For such a plane wave, E, = H, = E, = H,=0, and E, = z7H,



However, we always have \QE \QE \@E

_3\%5&

If the wave i x =0

» There must be radial components of the Poynting vector. This effect is also know as diffraction
spreading.

<>



Polarization

Assuming a plane wave propagating along z direction,

E =€E(rt)+€eE(rt)
and E (rt)=acos(at-kz+¢,) E/(Ft)=a cos(at-kz+g,)

Let T = at-kz, then

: : E : .
> =CO0S7-COSe, —SINT-SINQ, and —y=COSZ'-C05§Dy —3SINz-SiNg,
a

a, y

Eliminating T from above equation,

» (

E E EE .
ax)2+(a—y)2—2axayCOSgpzsngo and =90, -0,
X y

Xy




A
Example: Polarization

IV, ¢ = 3n/4
M X

N
N
N
N
N
N
S
A
S
S ~

E EE .
(EX)2+(—y)2—2 ~—2cosp=sin“p and @=¢ -@,
a a, a,a,
E_5
l.o=0 mp 2 a Il. ¢ = 7/4 I, ¢ =7/2
Ax S y A X A X
A7) >
%y /,”/ >y /-\
V.o=7 V1. ¢ = 5n/4 VII. ¢ = 3n/2
AN X A X AN X

N 7
N
N
N
N
N
N
\
N

VIII. ¢ =7/4
A X

NN
y \\\) > Y

TN
&_J

7
’
v
’
7
’
’
7
v
7
’




Detection
N ),z
EX
T A E,=acos(wt—kz) and E, =a,cos(at—kz+p)
> kL] Detect
9/ - R _finet—k) and H, = Zsin(et—kz + )
H, o 7y
S = ExH =8 {2 [L+cos(2et — 2kz)]+ 2 [L+ cos(2wt — 2kz + 2¢)]}
21, 21,

So energy flows of the two polarization states simply add up together and no cross terms.

S
N X 2
1 Since no detector can react fast enOUgll at Optical frequency, so what we aCtua”y sSee

\/\ 0 IS the average energy across A.
- > 1

T

opt




S—ExH-= éz{zal [1+ cos(2t — 2kz)] + 2a2

0 o

[1+ cos(2at — 2kz + 2¢)]}

Take < >,

N 1 t+rg .
<S(z,t)>=— [S(z,t)dt 7, :detector _response_time
Td t—7g

Since T4 >>T

opv SO the response time average ~ infinite time average.

z

R T 2 2
<S(zt) >=lim = [S(ztdt = (2 + )8
2T 2n, 2n,
Therefore the energy flow is directly proportional to the time average of E(t)- E(t).

2
S =< S(t) >:1R6(Ex H*)ZEEH* = =
° 2 21,




e
Example: Transmission and reflection coefficients

’Z‘ 4
2n cosé n,cosé@ —n, cosé
t = L L and r =— L 2 —>TE
0 0, t n,cosé, +n,cosdo, n,cosé, +n,coso,
2
Ny X 2n, cosé. n, cosé —n, cosé
0, t, = 91 - 7 and 1, =—* 91 - (92 —>TM
1 r n,cosé, +n, coso, n,cosé, +n, coso,
— — _ . 2 2
» E = rJ_,//Ei E, =1, E, and RJ_,// = ‘rJ_,//‘ TJ_,// = ‘tJ_,//‘

2
n-2nn,+n, .,
(nl 4 n2)2 only _if _nl=n2

Notethat  R+T —Toslr [* 4]t [ =>



Brewster angle

X 4
r Snell law: n;sin@, = n,sin@,, if n, > n; — sinB, > sind,
t
0 m) C0s6, < cosB, and n,cosh; < n,cos,
r 62 2
0, . 2n, Cos 6, and ~ N,c0sg, —n, coso,
From Y = 9 9 "= 9 9
1 n,cosé, +n, cosdy, n,coso, +n, coso,
n, | n, _ _ cosd, n,
Also consider that r, = 0 if n,cos0, = n,cosf, — =
cosé, n

Therefore there must exist the condition, when 6, = 64
—0,=0,—0,+0,=n/2 — tanOg = n,/n;

So when 0, = 0; — r, = 0, indicating no reflection and total transmission.



Total internal reflection (TIR)

Plane of incident

Snell’slaw: n;sin@ =n,sing, N, >N,

Increasing 6; will also increase 6,. When
Oi — eiz — ec — etz - 900, or

- . n
nsing,=n, ®» 6,=0=sin" =

1

If0,>6, nsing =n,sind or sin@t:isinei>l
n

2

K =K. snell law and K2=K:+K2=K:+K:=K’sin®6 +K:

o, _ n .
D Kk’ =k’—k’sin’6 =’ us, — o’ ue, sin* 6, = a)zlugz[l—(n—lsm 28

2

» k22

s ,ugz\/(&sinei)z—1:—ik2\/(&sin¢9i)2—1
n n

2 2



Example: Evanescence waves in z direction

— — . . e H i i H 1 n i
EF =txEe”e™ =txEge“e"»"e™** since Kk, :_'kz\/(n_lsmg‘)z -

2

—tx E_eiwteiKZXxsinﬁte—kz\/mz
|

—tx EieiwteiKZXxsinete—kz\/mz or | p= A, 1
S ' | 27T \/(Sinz (9t _1)

Propagating Evanescent
wave wave

Goos-Hanschen depth

So we have a propagating wave along x direction (real k,, = k,,) and an evanescent wave along z direction
(imaginary k.,).

N1/
-

p



Example: TIR applications

I. Circular polarization

450-P f
| 5 Circ-P
AL n=151

54° 73 4

I1. Prism coupler I11. Optical waveguide

& N

0, <6,

/

\I
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