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Part I – Semiconductors



 Semiconductors are the materials between metal and insulator.
 The conductivity can be flexibly adjusted by doping impurities.
 Different impurity gives different conductivity behaviors, such as hole and electron.
 Structure is almost perfect so that the materials are capable to be manipulated.
 The built-in field inside a semiconductor is controllable from outside.
 It’s compact (small size) and has the capability for integration.

- high-speed ICs, nano-technology applications, and quantum devices.
 Technology template (can be made by standard processing)

- processing, packaging, and testing are ready and very suitable for mass production.

Why Semiconductors ?

Resistivity, ρ (Ω cm) ρInsulator > 104 Ω cm ρSemiconductor > 10-2 - 104 Ω cm 

ρmetal < 10-6 Ω cm 
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Periodic table of atoms

Valence electrons:
1

2 6

SiC, GaAs, BN, InAs, GaP, CdS, CdSe, ZnS, ZnSe, PbS, and PbTe



Simple cubic (s. c.) Body center cubic (b. c. c.) Face center cubic (f. c. c.)

Cubic class of crystal

Crystal Structure

 The semiconductor materials we will study are single crystal, that is, the atoms are arranged in a 3-D
periodic fashion. The periodic arrangement of atoms in a crystal is called a lattice.

 For a given semiconductor, there is a unit cell that is representative of the entire lattice; by repeating
the unit cell throughout the crystal, one can generate the entire lattice.
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Miller index

Directions in crystals of the cubic class are very conveniently described in terms of Miller notation. For
example, any plane in space can be represent by:
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x where a, b, and c are the intercepts made by the plane at x, y, and z axes.

Writing h, k and l as the reciprocals of these intercepts, the plane can be described by
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The Miller indices for this plane are written as (hkl).
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Atom arrangements of semiconductors

The ultimate tensile strength of Si (0.35☓1010 dyn/cm2)
is maximum in <111> directions. In addition, the
modulus of elasticity in the <111> directions is higher
than that in the <110> or <100> directions (1.9☓1012

dyn/cm2, 1.7☓1012 dyn/cm2, and 1.3☓1012 dyn/cm2,
respectively). As a result, Si tends to cleave on the {111}
planes.

Face center cubic



Energy Band of Semiconductors

The energy level of an isolated hydrogen atom are given by
Bohr model:
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where n is a positive integer called the principle quantum
number. The discrete energies are -13.6 eV for the ground
level (n = 1), -3.4 eV for the first excited level (n = 2), etc.

The identical energy level of two closed-up atoms will split
into two levels by the interaction between atoms. When we
bring N atoms to form a crystal, the n-fold degenerate
energy level will split into N separate but closely spaced
levels due to atom interaction. This results in an essentially
continuous band of energy.

Two far apart atoms

Nuclear
core

Electron
Nuclear

core

Electron

Spin up

Spin down

Two close-up atoms



Na

Valence electron

Na

Valence electron

N Na atoms          N valence electrons
But with 2N energy levels

N valence 
electrons

Free electrons

2N energy
levels

For insulators, valence electrons completely
fill an allowed energy band.

2N states full

2N states empty

Eg

If Eg is too large, no electrons can gain
enough energy to translate from the lower
energy band to the higher energy band.

Low conductivity

High conductivity

Example: Alkali metals and insulators



k-space diagram 

For a free electron, the kinetic energy E is given by

However, the effective mass of a conduction band electron is different from the mass of a free electron.
The energy-momentum relationship of a conduction electron can be written as

where p is the particle momentum and m0 is the free electron mass.
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= where p is the crystal momentum and mn is the free electron mass.

E-p (or k) plot of a free particle
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[110]

f.f.c. crystal

[100]

Electrons traveling in different directions encounter different
potential patterns and therefore different k-space boundaries.



Energy band diagram 
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Indirect-band materials Direct-band materialCrystal momentum p

 For direct band material, transitions between two allowed bands can take place with no change in crystal
momentum p.

 A transition in an indirect bandgap material must necessarily include an interaction with the crystal so that
crystal momentum is conserved.



 With a known E-p relationship, one can obtain the effective mass from the second derivative of E with
respect to p

1

2

2 −









=

pd
Edmn The narrower the parabola, the smaller the effective mass.

Density of state of bulk semiconductors

L

L

L

L/λx = m L/λy = n L/λz = k λi : wavelength of electron, i = x, y, z

Use λi = h/pi L×px = h×m or L×dpx = h
L×py = h×n or L×dpy = h 
L×pz = h×k or L×dpz = h

L3×dpx×dpy×dpz= h3

The volume of an allowed state in momentum space is h3:
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Doping on Semiconductors

Pure Si-crystal Doped Si-crystal

As-doped
(n-type)

B-doped
(p-type)



Activation of doping

Due to the thermal agitating, the carrier concentration and the type of carrier can be controlled by impurity
doping!!!

Conduction band

Valence band

+ ++

Intrinsic
Donor doping

(n-type) 
Acceptor doping 

(p-type)

Ed

Ev



Energy levels of hydrogen atom are
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Using the energy required to remove an electron from the ground state of
hydrogen atom is 13.6 eV,

Si Si Si

Si As Si

Si Si Si

n-type Si
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for Si, mn = 0.06 mo and εr = 11.8, Eionization ~ 0.06 eV

Ionization energies for group III and V impurities

Dopant P As Sb B Al Ga In
Acceptor level 0.045 0.057 0.065 0.16

0.044 0.049 0.039Donor level

Ionization energies of impurities in Si



Fermi-Dirac distribution

Fermi-Dirac distribution :  
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 EF : the highest filled state at T= 0oK (from the Pauli’s
exclusion principle)

 When E = EF, f(E) = 0.5.

 Only the electrons near the Fermi’s level have the contribution
to current conduction.



The probability of a state with energy E occupied by an electron at temperature T. The Fermi function only
represents a probability of occupancy. It does not contain any information about the states available for
occupancy and, therefore, can not by itself specify the electron population at a given energy.

f(E)

EF
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Thermal equilibrium: the total energy of a semiconductor is a function only of crystal temperature.

EF: Fermi energy
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The electron carrier density 
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Density of states Fermi-Dirac distribution
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If Ed,v > 3kT,

Effective density of state

Effective Density of States
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kTEE FeEf /)()( −−≈→If Ed,v > 3kT,

In n-type material that is not too highly doped, few of the allowed states in the conduction band are filled.
The Fermi function in the conduction band is very small, and the Fermi level is well below the bottom of the
conduction band. Then (Ec – Ef) >> kT, and the Fermi function reduces to the mathematically simpler
Maxwell-Boltzmann distribution function. That is

kTEE FeEf /)()( −−≈

At energies well above the Fermi level the fraction of available states that are occupied is so small that the
exclusive-principle limitation has no practical effect and Maxwell-Boltzmann statistics are applicable.
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Free carriers of semiconductors



Ec

Ev

EF
Eg

n-type Ec-EF

Ec-EF n

Ec

Ev

EFEg

p-type

EF -Ev

EF -Ev p

States at energy E which are less than EF are mostly filled; States at energy E which are larger than
EF are mostly unoccupied.
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Example: Mass action law

At room temperature,
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 n, p are quite sensitive to the Eg , temperature and impurity level !!!
 The electrical properties can be controlled by impurity over a few orders of magnitude !!!
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kT ~ 25 meV exp(-3kT/kT) ~ 0.05

ni (GaAs) = 1.2☓106 cm-3 < ni (Si) = 1.45☓1010 cm-3



Example: Intrinsic level
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For p-type semiconductor

Ei: intrinsic level
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At RT, the second term is much smaller than the Eg. Hence, the intrinsic Fermi level Ei lies very
close to the middle of bandgap.



Problem: A Si ingot is doped with 1016 As atoms/cm3. Find the carrier concentration and Fermi level
at 300K.

At 300 K, we can assume complete ionization of impurity atoms. We have n ~ ND = 1016 cm-3
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If both donor and acceptor impurities present simultaneously, the impurity that is present in a greater
concentration determines the type of conductivity in the semiconductor.

> 3kT



Example: Charge neutrality
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If charge neutrality in a region where all dopant are ionized,
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In general, the net impurity concentration                 is larger than the intrinsic  carrier concentration. 
Therefore the above equations can be simplified to
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A silicon crystal is known to contain 10-4 atomic percentage of arsenic (As) as an impurity. It then receives a
uniformity doping of 3 ×1016 cm-3 phosphorus (P) atoms and subsequent uniformity doping of 1018 cm-3

boron (B) atoms. All dopant are activated by thermal annealing.

Si has 5 ×1022 atoms cm-3, 10-4 atomic percentage

Si is doped to a concentration of 5×1022 ×10-6 = 5×1016 As atoms cm-3

The added doping of 3×1016 P atoms cm-3, 
5×1016 + 3×1016 = 8×1016 n-type atoms cm-3

p-type doping is 1018 cm-3,
p = 1018 - 8×1016 = 9.2×1017 cm-3

Problem: Compensation



Carrier transport phenomena



Carrier Drift

Mobility

Under thermal equilibrium, the average thermal energy of a conduction electron can be given by:

τcn: scattering
mean-free time

0=F
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0≠F
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τcn

kTvm the 2
3

2
1 2 = where vth is the average thermal velocity.

At 300 K, the thermal velocity is about 107 cm/s for Si and GaAs. Electrons in semiconductor are therefore
moving rapidly in all direction. The thermal motion of an electron can be visualized as a succession of
random scattering from collisions with lattices, impurities, and other scattering centers. The average
distance between collisions is called mean free path, and the average time between collision is called mean
free time, τcn.

Electrons exchange energy when collide with the lattice and
drop toward their thermal equilibrium positions. The energy
lost in each collision is much less than the mean thermal energy
of the electrons.
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Mobility is an important parameter for carrier transport because it describes how strongly the motion of an
electron is influenced by an electric field.



Example: hot carriers

For Si semiconductor, electrons with µn = 1400 cm2/Vsec have a drift velocity of only 1.5 % of the thermal
velocity if E = 100 V/cm. Typical thermal velocity at RT is 107 cm/sec.

E        vd Ek = 

When electrons attain energy above the ambient thermal energy, they are often characterized as hot carriers
with an effective temperature Te. When the energy of the hot carriers reaches a critical value, a new scattering
process (optical phonon scattering) become important. This new scattering process can effectively transfer
energy from the hot carriers to the lattice, and it is the major reason that the drift velocity approaches a limit
value at high field conditions.
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Empirical expression of e-h mobility
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N (cm-3) Arsenic Phosphorus Boron

1013 1423 1424 486
1014 1413 1416 485
1015 1367 1374 478
1016 1184 1194 444
1017 731 727 328
1018 285 279 157
1019 108 115 72
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Carrier concentration and mobility are the two most important factors which affect the conductivity of
a semiconductor.
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Four-point probe 

The four-point probe technique can also be used to measure resistance of a connection where contact resistance
(Rc) of probes can not be ignored. As shown in the following figure, probe 1 and probe 2 are used to inject
current to the contact pads, and probe 3 and probe 4 are used to measure the voltage difference between the two
pads. Please show that the resistance (Rl) between the two pads can be readily obtained by dividing the voltage
measured by probe 3 and 4 to the current injected by probe 1 and 2. The contact resistance of the probes are
canceled by using the technique.

probe 1 2

3 4
V

I

Top view Side view

V

3 4Rc

Rl
Vl

Vc Vc
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x

III

Because of the finite temperature, the electrons have random motions. The
gradient of carrier concentration will result in a net carrier flow. Diffusion
current is generally not an important consideration in metals because of their
high conductivity. The lower conductivity and the possibility of non-uniform
density of carriers and of carrier energies, however, often makes diffusion a
very important process affecting current flow in semiconductors.
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The carrier-transport process involves not only the drift
and also the diffusion processes !!!

Total current is:
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Current density equations
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Continuity Equations

We are now ready to consider the over all effect when drift, diffusion, and recombination occur
simultaneously in a semiconductor material.
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The number of hole in the slice may increase due to net current flow into the slice and net carrier
generation in the slice. The over all rate of holes increase include three components: the change of hole flux
at x, plus the rate at which holes are generated, minus the rate at which they are recombined with electrons
in the slice.
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Jp(x) Jp(x+dx)

dx

Gp, Rp

Generation: Gp Recombination: Rp
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In addition to the continuity equations, Poisson equation must also be satisfied.

where ρs is the space charge density and εs is the dielectric permittivity.
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Steady-state injection from one side

hν
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nnnn epppxp /

00 ])0([)( −−+= where Lp is called the diffusion length.

hν

pn(0)

pn0(0)
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Metal-semiconductor Contacts



At thermal equilibrium, Fermi level is constant throughout a system.

n = g•FD

The filled state density is The vacant state density is

v = g•(1-FD)
Allowed electron state density

Fermi function

We now consider that the two systems are brought in intimate contact. Equilibrium is reached when 
there is no net transfer of electrons at any energy.
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Equilibrium in Electronic Systems



Example: inhomogeneously doped semiconductor 

Consider now the energy band diagram at thermal equilibrium for an n-type semiconductor doped
with Nd1 for 0 < x < a and with Nd2 for x > a. Please draw the energy band diagram of this system.

EC

EV

Ef

Eo

EC

EV

Ef

Eo

EC

EV

Ef

Eo

Nd1 Nd2

Eo: vacuum energy



 At thermal equilibrium, there is no net transfer of electrons at any energy. Therefore the Fermi level is
constant throughout the system.

 If φM is larger than φS, e will flow from semiconductor to metal, and this will causes the Ec to bend upward.
 If φS is larger than φM, e will flow from metal to semiconductor, and this will causes the Ec to bend

downward.

Ec
Efn

Eo: vacuum energy

Ev

qφM : work function (4.75 eV) qφS : work function qX : electron affinity (4.05 eV) 

Au

Efm

n-Si semiconductor

g(E)

E Ef

E∝
E

Metal Semiconductor
Filled state

Filled state

Filled state

In the metal, the Fermi level is immersed within a continuum of allowed states, while in semiconductor, the
density of state is negligible at the Fermi level.

Band diagram



Band diagram of metal-semiconductor interface

n-semiconductor p-semiconductor
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qφiqφB

qφM
qφS qX
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qφi
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qφS qXxd

Schottky
contacts
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 φi : build-in protential = φM - φs = φM – X –(EC - Efn)
 φB : barrier height = φM – X
 xd : depletion region width
 Our development thus far has relied on the fact that basic band structure of the two materials are 

unchanged near the surface.



Charge, Depletion, and Capacitance

Consider the Poisson equation: 
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Complete Depletion Approximation

xd0
x

n

Nd
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If φi is large enough to deplete the free carriers in the junction, the
complete depletion approximation is then valid.

The Poisson equation becomes : 
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When a bias is applied to a metal-n-type semiconductor junction, we need to consider the non-equilibrium
condition of the junction. Under a bias condition, the barrier is reduced when the metal is biased positively
with respect to the semiconductor, and it is increased under bias of the opposite polarity.

Under the bias conditions, the voltage drop across the space-charge region is changed to (φi – Va), then the
space charge density in the semiconductor changes accordingly.



Example: Complete depletion approximation
Complete depletion approximation is valid only when the build-in potential is large enough to deplete the
free carriers in the space-charge region.

In equilibrium,

dx
dn

nq
kT

dx
dn

n
DE

dx
dnqDnEqJ

n

n
xnxnn

110 −=−=→+==
µ

µ

Use
n

dn
q

kTd
dx
dEx =→−= φφ

n
n

q
kT '

ln=∆→ φ

For n’ = 1018 cm-3, n = 1016 cm-3, and the variation of the dopant concentration is over the range of a few
hundred nanometers,
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Under this condition, the complete depletion approximation is not valid.



I-V Characteristics

Drift-diffusion approach
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Surface States

There are extra allowed states for electrons that are present at the semiconductor surface, but not within
the bulk.

Tamm or Shockley states

Si Si Si Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

A
sym

m
etric bonds

Surface

Bulk

E
nergy

Ec

Ev

Surface states

Nst ~ No
2/3 (cm-2), for Si, No = 5 × 1022 cm-3

Nst = 1015 cm-2

Bonded foreign atoms or crystal defects 

Si Si Si Si

Si Si Si Si

Si Si Si

Si Si Si Si

Bulk

O

Acceptor states

Surface

 Donor states: states are neutral when occupied by
electrons and positively charged when unoccupied.

 Acceptor states: states are negative when occupied
and neutral when empty.



An n-type Si wafer with a doping concentration of 1018 cm-3 at RT is illuminated through a passivating layer
of SiO2 so that the hole and electron density exceed their thermal equilibrium values. Assume that the
surface electron density ns = 1016 cm-3 at thermal equilibrium, the photo generation of carriers is 2×1014 cm-

2s-1, and the surface hole density under illumination increases to ps =1010 cm-3.

Since nso = 1016 cm-3 << Nd = 1018 cm-3, the surface is slightly depleted 
of majority carriers.

The thermal equilibrium density of hole is
pso = ni

2/nso = 2.1×104

After photo generation, 
ps = 1010 cm-3 >> pso, 

therefore the excess carrier density of hole is ∆ps = 1010 cm-3

If Sp = 104 cm/s, the net recombination rate is
Us = Sp × ∆ps = 1014 cm-2s-1, 

therefore 50% of the excess carriers are recombined at the surface.

SiO2

EC

EV

EF

hv

Nt

Example: Surface state and surface recombination velocity



Part II – Optics



Maxwell’s equations and wave propagation
Maxwell’s equations, in MKS unit, can be written in the form
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Totally, we have 15 unknowns, but with only 6 independent equations. To solve the Maxwell’s equations, we 
need more equations.
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Constitutive relation
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Consider a homogenous and source free region in free space, then 

For a monochromatic plane wave,
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In a linear lossless, homogeneous, and isotropic medium, the constitutive relation can be written as
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Additional 6 equations

Monochromatic plane waves
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Wave equations

The solutions to above wave equations can be written as
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If we only consider the forward-propagating waves,
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Consider now, if the wave is propagating along z direction
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Example: Plane waves

What is a plane wave?

The wave has a perfect flat and infinite in extent phase front.
Does not exit!

So under what condition, an obtainable wave can be approximated as a plane wave?

Phase front
f1 f2

Laser

Spatial filter

Truncated x-polarized wave

The width of the output beam is finite

Let the truncated x-polarized wave be waistbeamweeEeE o
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For such a plane wave, Ey = Hx = Ez = Hz = 0, and Ex = ηHy



However, we always have
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There must be radial components of the Poynting vector. This effect is also know as diffraction 
spreading.

xS

zS

x̂

ŷ
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Polarization
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Assuming a plane wave propagating along z direction,
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Example: Polarization
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Detection
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So energy flows of the two polarization states simply add up together and no cross terms.
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Since no detector can react fast enough at optical frequency, so what we actually see 
is the average energy across A.
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Example: Transmission and reflection coefficients
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Brewster angle

Snell law: n1sinθ1 = n2sinθ2 , if n2 > n1 → sinθ1 > sinθ2

cosθ1 < cosθ2 and n1cosθ1 < n2cosθ2
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Therefore there must exist the condition, when θ1 = θB

→ θ1 = θr → θr + θ2 = π/2 → tanθB = n2/n1

So when θ1 = θB → r// = 0, indicating no reflection and total transmission.
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ẑ

x̂



Total internal reflection (TIR)
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Example: Evanescence waves in z direction
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So we have a propagating wave along x direction (real k1x = k2x) and an evanescent wave along z direction 
(imaginary k2z).
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Example: TIR applications

I. Circular polarization

II. Prism coupler

Prism

Substrate

ρ

III. Optical waveguide

n1

n2
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θi < θc
θi > θc

TIR

45o-P
Circ-P

n = 1.51
54o 73’
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